Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31931956

RESUMO

Understanding genome organization and gene regulation requires insight into RNA transcription, processing and modification. We adapted nanopore direct RNA sequencing to examine RNA from a wild-type accession of the model plant Arabidopsis thaliana and a mutant defective in mRNA methylation (m6A). Here we show that m6A can be mapped in full-length mRNAs transcriptome-wide and reveal the combinatorial diversity of cap-associated transcription start sites, splicing events, poly(A) site choice and poly(A) tail length. Loss of m6A from 3' untranslated regions is associated with decreased relative transcript abundance and defective RNA 3' end formation. A functional consequence of disrupted m6A is a lengthening of the circadian period. We conclude that nanopore direct RNA sequencing can reveal the complexity of mRNA processing and modification in full-length single molecule reads. These findings can refine Arabidopsis genome annotation. Further, applying this approach to less well-studied species could transform our understanding of what their genomes encode.


Assuntos
Adenosina/análogos & derivados , Arabidopsis/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA de Plantas/genética , Análise de Sequência de RNA , Adenosina/metabolismo , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Metilação , Nanoporos , Poli A/genética , Poli A/metabolismo , Capuzes de RNA , Splicing de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Plantas/química , RNA de Plantas/metabolismo , RNA não Traduzido/química , RNA não Traduzido/genética
3.
RNA ; 22(6): 839-51, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27022035

RESUMO

RNA-seq is now the technology of choice for genome-wide differential gene expression experiments, but it is not clear how many biological replicates are needed to ensure valid biological interpretation of the results or which statistical tools are best for analyzing the data. An RNA-seq experiment with 48 biological replicates in each of two conditions was performed to answer these questions and provide guidelines for experimental design. With three biological replicates, nine of the 11 tools evaluated found only 20%-40% of the significantly differentially expressed (SDE) genes identified with the full set of 42 clean replicates. This rises to >85% for the subset of SDE genes changing in expression by more than fourfold. To achieve >85% for all SDE genes regardless of fold change requires more than 20 biological replicates. The same nine tools successfully control their false discovery rate at ≲5% for all numbers of replicates, while the remaining two tools fail to control their FDR adequately, particularly for low numbers of replicates. For future RNA-seq experiments, these results suggest that at least six biological replicates should be used, rising to at least 12 when it is important to identify SDE genes for all fold changes. If fewer than 12 replicates are used, a superior combination of true positive and false positive performances makes edgeR and DESeq2 the leading tools. For higher replicate numbers, minimizing false positives is more important and DESeq marginally outperforms the other tools.


Assuntos
Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica , RNA Fúngico/genética , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética
4.
Bioinformatics ; 31(22): 3625-30, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26206307

RESUMO

MOTIVATION: High-throughput RNA sequencing (RNA-seq) is now the standard method to determine differential gene expression. Identifying differentially expressed genes crucially depends on estimates of read-count variability. These estimates are typically based on statistical models such as the negative binomial distribution, which is employed by the tools edgeR, DESeq and cuffdiff. Until now, the validity of these models has usually been tested on either low-replicate RNA-seq data or simulations. RESULTS: A 48-replicate RNA-seq experiment in yeast was performed and data tested against theoretical models. The observed gene read counts were consistent with both log-normal and negative binomial distributions, while the mean-variance relation followed the line of constant dispersion parameter of ∼0.01. The high-replicate data also allowed for strict quality control and screening of 'bad' replicates, which can drastically affect the gene read-count distribution. AVAILABILITY AND IMPLEMENTATION: RNA-seq data have been submitted to ENA archive with project ID PRJEB5348. CONTACT: g.j.barton@dundee.ac.uk.


Assuntos
Modelos Estatísticos , Análise de Sequência de RNA/métodos , Sequência de Bases , Distribuição Binomial , Perfilação da Expressão Gênica , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética
5.
J Allergy Clin Immunol ; 134(1): 82-91, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24880632

RESUMO

BACKGROUND: Atopic dermatitis (AD; eczema) is characterized by a widespread abnormality in cutaneous barrier function and propensity to inflammation. Filaggrin is a multifunctional protein and plays a key role in skin barrier formation. Loss-of-function mutations in the gene encoding filaggrin (FLG) are a highly significant risk factor for atopic disease, but the molecular mechanisms leading to dermatitis remain unclear. OBJECTIVE: We sought to interrogate tissue-specific variations in the expressed genome in the skin of children with AD and to investigate underlying pathomechanisms in atopic skin. METHODS: We applied single-molecule direct RNA sequencing to analyze the whole transcriptome using minimal tissue samples. Uninvolved skin biopsy specimens from 26 pediatric patients with AD were compared with site-matched samples from 10 nonatopic teenage control subjects. Cases and control subjects were screened for FLG genotype to stratify the data set. RESULTS: Two thousand four hundred thirty differentially expressed genes (false discovery rate, P < .05) were identified, of which 211 were significantly upregulated and 490 downregulated by greater than 2-fold. Gene ontology terms for "extracellular space" and "defense response" were enriched, whereas "lipid metabolic processes" were downregulated. The subset of FLG wild-type cases showed dysregulation of genes involved with lipid metabolism, whereas filaggrin haploinsufficiency affected global gene expression and was characterized by a type 1 interferon-mediated stress response. CONCLUSION: These analyses demonstrate the importance of extracellular space and lipid metabolism in atopic skin pathology independent of FLG genotype, whereas an aberrant defense response is seen in subjects with FLG mutations. Genotype stratification of the large data set has facilitated functional interpretation and might guide future therapy development.


Assuntos
Dermatite Atópica/genética , Proteínas de Filamentos Intermediários/genética , Pele/metabolismo , Transcrição Gênica/imunologia , Adolescente , Estudos de Casos e Controles , Criança , Dermatite Atópica/imunologia , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Espaço Extracelular/imunologia , Feminino , Proteínas Filagrinas , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas de Filamentos Intermediários/imunologia , Metabolismo dos Lipídeos/imunologia , Masculino , Pele/imunologia , Pele/patologia , Adulto Jovem
6.
PLoS One ; 9(4): e94270, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24722185

RESUMO

The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct and complete annotation in addition to the underlying genomic sequence is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3' untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3' polyadenylation sites to within +/- 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1) gene and 3' UTR re-annotation (including extension of one 3' UTR by 5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4) identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental data.


Assuntos
Regiões 3' não Traduzidas , Biologia Computacional/métodos , Etiquetas de Sequências Expressas , Análise de Sequência de RNA/métodos , Animais , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Galinhas/genética , Loci Gênicos/genética , Genoma , Genoma Humano , Genoma de Planta , Genômica , Humanos , Metiltransferases/genética , Modelos Estatísticos , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/genética , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...